A Guide to Structured Illumination TIRF Microscopy at High Speed with Multiple Colors
نویسندگان
چکیده
Optical super-resolution imaging with structured illumination microscopy (SIM) is a key technology for the visualization of processes at the molecular level in the chemical and biomedical sciences. Although commercial SIM systems are available, systems that are custom designed in the laboratory can outperform commercial systems, the latter typically designed for ease of use and general purpose applications, both in terms of imaging fidelity and speed. This article presents an in-depth guide to building a SIM system that uses total internal reflection (TIR) illumination and is capable of imaging at up to 10 Hz in three colors at a resolution reaching 100 nm. Due to the combination of SIM and TIRF, the system provides better image contrast than rival technologies. To achieve these specifications, several optical elements are used to enable automated control over the polarization state and spatial structure of the illumination light for all available excitation wavelengths. Full details on hardware implementation and control are given to achieve synchronization between excitation light pattern generation, wavelength, polarization state, and camera control with an emphasis on achieving maximum acquisition frame rate. A step-by-step protocol for system alignment and calibration is presented and the achievable resolution improvement is validated on ideal test samples. The capability for video-rate super-resolution imaging is demonstrated with living cells.
منابع مشابه
Single-shot super-resolution total internal reflection fluorescence microscopy
20 We demonstrate a simple method for combining instant structured illumination microscopy (SIM) 21 with total internal reflection fluorescence microscopy (TIRF), doubling the spatial resolution of TIRF 22 (down to 115 +/13 nm) and enabling imaging frame rates up to 100 Hz over hundreds of time points. 23 We apply instant TIRF-SIM to multiple live samples, achieving rapid, high contrast super-r...
متن کاملTime-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination.
Previous implementations of structured-illumination microscopy (SIM) were slow or designed for one-color excitation, sacrificing two unique and extremely beneficial aspects of light microscopy: live-cell imaging in multiple colors. This is especially unfortunate because, among the resolution-extending techniques, SIM is an attractive choice for live-cell imaging; it requires no special fluoroph...
متن کاملCorrection: Localized plasmon assisted structured illumination microscopy for wide-field high-speed dispersion-independent super resolution imaging.
Correction for 'Localized plasmon assisted structured illumination microscopy for wide-field high-speed dispersion-independent super resolution imaging' by Joseph Louis Ponsetto et al., Nanoscale, 2014, 6, 5807-5812.
متن کاملTotal internal reflection fluorescence (TIRF) microscopy illuminator for improved imaging of cell surface events.
Total internal reflection fluorescence (TIRF) microscopy is a high-contrast imaging technique suitable for observing biological events that occur on or near the cell membrane. The improved contrast is accomplished by restricting the thickness of the excitation field to over an order of a magnitude narrower than the z-resolution of an epi-fluorescence microscope. This technique also increases si...
متن کاملHigh performance, LED powered, waveguide based total internal reflection microscopy
Total internal reflection fluorescence (TIRF) microscopy is a rapidly expanding optical technique with excellent surface sensitivity and limited background fluorescence. Commercially available TIRF systems are either objective based that employ expensive special high numerical aperture (NA) objectives or prism based that restrict integrating other modalities of investigation for structure-funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 3568 شماره
صفحات -
تاریخ انتشار 2016